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It is shown phenomenologically that the fractional derivative t=Dau of order
a of a multifractal function has a power-law tail 3 |t|−pa in its cumulative
probability, for a suitable range of a’s. The exponent is determined by the con-
dition zpa=apa, where zp is the exponent of the structure function of order p.
A detailed study is made for the case of random multiplicative processes (Benzi
et al., Physica D 65:352 (1993)) which are amenable to both theory and numeri-
cal simulations. Large deviations theory provides a concrete criterion, which
involves the departure from straightness of the zp graph, for the presence of
power-law tails when there is only a limited range over which the data possess
scaling properties (e.g., because of the presence of a viscous cutoff ). The
method is also applied to wind tunnel data and financial data.
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1. INTRODUCTION

Multifractality for functions was introduced by Parisi and Frisch (1) to
interpret experimental results of Anselmet et al. on fully developed tur-
bulence. (2) We show in this paper that multifractality is connected to the
tail behavior of fractional derivatives (to be defined precisely later). First,
in Section 2 we give a simple phenomenological argument predicting power-
law tails in probability distributions of fractional derivatives and suggesting
practical constraints on their observability. In Section 3 we consider the
case of a class of synthetic multifractal functions, the random multiplicative
processes of Benzi et al., (3) for which theoretical results are obtained by



relating them to the theory of random linear maps. (4) In particular, using
large deviations theory, we can predict the number of generations in a
given random multiplicative process needed to observe power-laws tails
in probabilities of fractional derivatives. Numerical experiments with such
processes are presented in Section 3.3. In Section 4 we analyze high-
Reynolds number wind tunnel turbulence data and financial data; we show
that the former, having only weak deviations from self-similar behavior à
la Kolmogorov 1941, are unlikely to display power-law tails at accessible
Reynolds numbers. Section 5 gives the conclusions. In this paper we con-
sider exclusively multifractal functions; the case of multifractal measures,
arising, e.g., from chaotic dynamical systems or the dissipation of turbulent
flows (see, e.g., ref. 5), will be addressed elsewhere.

2. PHENOMENOLOGY

A (homogeneous random) function u(x) with x ¥ Rd is called multi-
fractal if (for some real interval 0 < hmin [ h [ hmax < 1) there is a conti-
nuum of sets Sh of fractal dimension D(h) such that, when x belongs to Sh,
the function u has a Hölder-like behavior with exponent 0 < h < 1. (1) In
terms of increments this is expressed as

|du(x, r)|3 |r|h, rQ 0, x ¥Sh, (1)

where du(x, r)=u(x+r)−u(x). If we take D(h) to be the covering dimen-
sion (see ref. 6, Section 8.5.1 and references therein) and use instead the
codimension F(h) — d−D(h), where d is the dimension of space, and then
‘‘thicken’’ the set Sh by covering it with balls of small radius r, into the set
Sr
h , we have

Prob{x ¥Sr
h}3 r

F(h), rQ 0. (2)

For the case of an ergodic random function, this probability can also
be interpreted as a fraction of space. Note that by using codimensions
the extension from the one-dimensional to the multi-dimensional case is
straightforward ( just replace scalars used throughout this paper by vectors).
For more background on multifractals see ref. 6 and references therein.

We turn now to fractional derivatives. The definition used here for
the fractional derivative Dau(x) of order 0 [ a < 1 of a function u(x) is to
multiply its Fourier transform û(k) by |k|a. This might be called, more
correctly, the fractional (negative) Laplacian of order a/2. In physical
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space our fractional derivative may be written, in the one-dimensional case,
as

Dau(x) —−
a

p
sin
ap

2
C(a) P.V. F

u(x+r)−u(x)
|r|a+1

dr, (3)

where C(a) is the Gamma function and P.V. denotes a Cauchy principal
value. The Fourier-space definition is very convenient for periodic func-
tions. When working with non-periodic experimental data, windowing may
be necessary before the Fourier transformation is applied. Note that other
definitions of the fractional derivative, for example that based on the
ordinary derivative of the the Riemann–Liouville fractional integral, (7) do
not produce substantially different results, as far as our work is concerned.

It is clear from (3) that, at a point x0 at which u(x) has Hölder expo-
nent h > a the fractional derivative Dau(x0) is finite (provided the function
u is, say, bounded). If a \ h the fractional derivative will generally be infi-
nite. This is also the case with the definition of fractional derivatives used
in ref. 8. But what takes place in the neighborhood of such a point? Let us
first consider the case of an isolated non-oscillatory singularity of exponent
h at x. That is, we have |u(x+r)−u(x)|3 |r|h for small r. By substitution
into (3) it is easily checked that, with a suitable constant B > 0

|Dau(y)| ’ B |y−x|h−a, yQ x, (4)

a relation which could have been guessed by simple dimensional analysis.
Since h−a < 0, the fractional derivative becomes very large near x.

What happens if instead of isolated singularities we have multifractal
non-oscillatory singularities? By a standard argument of multifractal anal-
ysis, in the phenomenological presentation of ref. 1 (see also ref. 6, Sec-
tion 8.5), we still use (4) for determining the contribution of points x ¥Sh
to Dau(y) calculated at points which are near Sh without belonging to this
set. It is now very simple to estimate the probability to have |Dau| > t for
large positive t. From (4), the contribution from a given h < a to |Dau(y)|
will be greater than t provided that

|y−x| < 1 t
B
2−

1
a−h
. (5)

By (2), this has probability

Prob{|Dau| > t}3 |y−x|F(h)3 t−
F(h)
a−h . (6)
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This is a power law in t. As we vary the Hölder exponent h, the exponent
of this power law changes. When we sum the contributions of the various
h’s (with suitable regular weights dm(h) which we need not specify) we get
an integral which, when evaluated by Laplace’s method, gives us leading-
order power-law behavior for the tail probability:

Prob{|Dau| > t}3 t−pa, (7)

pa(a)=inf
h < a

F(h)
a−h

. (8)

We shall now show that pa can be easily found from the scaling
exponents zp of structure functions. We remind the reader that, when u(x)
is a homogeneous multifractal function, the moments of its increments,
called structure functions, are defined as

Sp(r) — O(|du(r)|)pP, p \ 0. (9)

They follow power laws at small r’s:

Sp(r)3 |r|zp, (10)

where the up convex function zp and the down convex function F(h) are
Legendre–Fenchel transforms of each other (1, 6)

F(h)=sup
p
(zp−ph), zp=inf

h
(ph+F(h)). (11)

Using (11) in (8) and interchanging the orders of the infimum and the
supremum, we obtain

pa=sup
p \ 0

inf
h < a

zp−ph
a−h

. (12)

The infimum over h < a is −. if zp−pa < 0, it equals p if zp−pa=0 and
is less than this value if zp−pa > 0. Thus pa(a) is the supremum of all p’s
such that zp−pa \ 0; in other words, it is the solution of

zpa=pa(a) a, (13)

which is unique in view of the convexity of zp and vanishing for p=0
(a consequence of (9)). Thus, the exponent pa(a) of the tail probability of
the fractional derivative of order a can be obtained from the graph of zp by
the simple construction shown in Fig. 1: a line through the origin of slope a
intersects the graph at p=pa(a).
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Fig. 1. Geometrical determination of the exponent pa(a) of the power-law tail from the
graph of zp, the structure-function exponents. hmax is the maximum Hölder exponent; hmin, the
minimum Hölder exponent, is the (algebraically) smallest slope, not shown.

This construction has a number of interesting consequences which are
now presented. First, recall that

ha=
dzp
dp
:
p=pa

. (14)

(This follows from the observation that F(h), if down convex, can be
recovered from zp by another Legendre transformation.) If there is a
minimum Hölder exponent hmin and maximum exponent hmax, it is clear
that a has to be between those two values for pa to exist. If a [ hmin we do
not expect any power-law tail at all (at least not by the mechanism con-
sidered here). If a > hmax we expect Dau(x) to be infinite almost everywhere.
Dau(x) can then be made finite if we assume that there is some ultraviolet
cutoff, e.g., a viscous cutoff. If so, the tail probability of Dau(x) can be
estimated by the same kind of phenomenological arguments used for the
tail probability of velocity gradients in turbulence. (6, 9, 10)

Next, we can use the construction to estimate how far the power-law
tail (if present at all) is expected to extend when multiscaling holds only
over a finite range of scales. By (4) the fractional derivative stemming from
the Hölder exponent ha is given by

|Dau(y)| ’ B |y−x|−C(a), (15)

C(a)=a−ha=
zpa
pa
−
dzp
dp
:
p=pa

. (16)

C(a) will be called the multifractality parameter. In the next sections we
shall see that the presence of a power-law tail requires in practice

nC(a) \ 10, (17)
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where n is the number of octaves in the scaling range (e.g., in the inertial
range for turbulence). If the range of spatial scales is somewhat limited, it is
crucial that C(a) be as large as possible. In those instances where the graph
of zp is close to a straight line through the origin, the two terms on the
r.h.s. of (16) will nearly cancel and C(a) will be very small. Clearly, having
a graph departing strongly from a straight line will help in seeing power-
law tails.

All the material presented in this phenomenological section is, by
definition, ‘‘soft.’’ Is it possible to give harder evidence? One way is to
work with Burgers turbulence in the limit of vanishing viscosity (ref. 11 and
references therein). The singularities (mostly shocks) are then isolated and
it is easy to make our phenomenological arguments rigorous. Solutions to
the Burgers equation are however bifractal, not truly multifractal. In the
next section we discuss a simple example of a truly multifractal function.

3. THE CASE OF THE MULTIFRACTAL RANDOM MULTIPLICATIVE

PROCESS

In 1993 Benzi et al. (3) introduced an explicit method for constructing
multifractal random functions with arbitrary zp. Such functions are con-
structed by iterating suitable random maps and will be called here ‘‘random
multiplicative processes’’ (rmp). Our method of construction differs some-
what from that of ref. 3 but is basically equivalent.

We first define the local rmp as a real random function on the real
line. Let f(x) be an indefinitely differentiable function with rapid decrease
at infinity and vanishing space integral. In practice we shall take the
Mexican hat function of width s used in ref. 3

f(x) —−
d2

dx2
exp 1 − x

2

2s2
2 . (18)

Let m be a random variable, called the random multiplier, with symmetric
distribution and finite moments of all orders, characterized by its cumula-
tive distribution

P(g) — Prob{m > g} (19)

and its probability density

p(g) —−
dP(g)
dg
=p(−g). (20)
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We shall also need independent identically distributed copies of m, denoted
m (1)n and m (2)n (n=0, 1,...). (Henceforth the words ‘‘identically distributed’’
are understood.) We define now a sequence of random functions wn(x)
recursively by

w0(x)=f(x), (21)

wn+1(x)=f(x)+m
(1)
n w

(1)
n (2x)+m

(2)
n w

(2)
n (2x−1), (22)

n=0, 1,...,

where w (1)n (x) and w (2)n (x) are independent copies of wn(x). The almost sure
pointwise limit for nQ. of wn(x), if it exists, is denoted by w(x) and
satisfies obviously

w(x)=law f(x)+m(1)w (1)(2x)+m(2)w (2)(2x−1), (23)

where =law designates equality in law. It may be checked that our random
map definition is equivalent to that given in ref. 3, which involves an infi-
nite series.

Assuming the limit to exist, we now define the global rmp as

u(x) — C
i=+.

i=−.
w (i)(x+xi), (24)

where the w (i)(x) are independent copies of w(x) and the xi are Poisson-
distributed points on the real line with density c.

The construction of the global rmp from the local one, which differs
slightly from that of ref. 3, guarantees statistical homogeneity. Denoting
statistical means (expectation values) by angular brackets, we can relate the
characteristic functionals of u(x) and w(x). Indeed, we have

7exp 3F
R
ıj(x) u(x) dx48

=exp 3c F
R

57exp 1F
R
ıj(x) w(x+y) dx28−16 dy4 , (25)

where j(x) is a test function and >R denotes integration from −. to +..
(To establish (25) it is convenient to assume that there are N points xi dis-
tributed uniformly in the interval [−L,+L] and then let NQ., LQ.
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and N/(2L)Q c.). A special case of (25) relates just the characteristic
functions (which for u does not depend on x):

Oe ızuP=exp 3c F
R
(Oe ızw(y)P−1) dy4 . (26)

The fractional derivative Dau(x) is obtained by replacing, in (24), w(x)
by Daw(x). Applying Da to (23), we find that Daw(x) satisfies

wa(x)=
law
fa(x)+2am (1)w

(1)
a (2x)+2

am (2)w (2)a (2x−1), (27)

wa(x) — Daw(x), fa(x) — Daf(x), (28)

which is basically the same as (23) with f changed into Daf and the
random multiplier rescaled by a factor 2a.

Various theoretical results for structure functions were obtained for
rmp’s in ref. 3. In particular it was shown that the structure function of
order p \ 0 has (with our notation) the scaling exponent

zp=−ln 2 O|m|
pP. (29)

Here, we need new results for probability distributions. It turns out that
there is a class of space-independent linear random maps (Kesten maps)
whose probability distributions are very closely connected to those of the
rmp’s. They are discussed in the next subsection.

3.1. Kesten’s Random Maps

Consider the sequence of random variables defined recursively by

w0=1, (30)

wn+1=1+mnwn, (31)

n=0, 1,...,

where the mn’s are independent copies of the random multiplier m, with the
same definition as used above. The limit of wn for nQ., if it exists, has
the same distribution as

w=1+m1+m1m2+·· ·+m1m2 · · ·mn+·· · (32)

Kesten has obtained a number of important results for a more general class
of maps where the multipliers may be random matrices. (4) In its scalar form
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(31) has attracted the attention of statistical physicists interested in disor-
dered systems or finance. (12–14) Results on the existence of invariant mea-
sures for Kesten maps and more general nonlinear random maps are found
for example in refs. 15–17. Here, we are only interested in the scalar linear
map defined by (31), which we shall call the ‘‘Kesten map’’ associated to
the rmp.

We now summarize a few important results for Kesten maps without
giving proofs, but we shall give occasional hints. Let

l — Oln |m|P (33)

be the Lyapunov exponent of the map. If l > 0 the wn’s run away to
infinity almost surely. (ln |m1m2 · · ·mn | grows approximately as ln.) If |m| [
a < 1 almost surely, then the series (32) converges to a value < 1/(1−a).
Hence, the tail behavior of w at large values is trivial. When l < 0 and there
is a non-trivial tail, the nature of the invariant measure (the distribution of w)
depends in particular on the average slope O|m|P of the map. If O|m|P > 1
it may be shown that the invariant measure is absolutely continuous, i.e.,
that there is a finite probability density for w. (This may still hold, but only
in special instances, for O|m|P < 1.) The most important result is that, for
O|m|P > 1 and l < 0, there is a power-law tail:

Prob{|w| > t}3 t−pa, tQ., (34)

where pa is the single positive number such that

O|m|paP=1. (35)

(Take the absolute value of (31), raise it to the pth power, average and
neglect the contribution of the additive 1 when p is close to pa and just
below, so that this moment comes predominantly from the tail behavior
of w.)

Now we give an alternative derivation of this power-law behavior,
based on large deviations, which is in spirit very close to the phenome-
nological derivation of power laws in Section 2. For background on large
deviations see, e.g., refs. 18 and 19 (an elementary introduction may be
found in Section 8.6.4 of ref. 6).

Consider the nth term on the r.h.s. of (32). Since the m variables have
symmetric distributions, it may written

±|m1 | |m2 | · · · |mn |=±2−(a1+a2+· · ·+an), ai —− ln 2 |mi |, (36)

where the plus and minus signs are taken with equal probabilities 1/2.
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First, let us assume that just one term dominates the tail behavior of w:

w %±|m1 | |m2 | · · · |mn | (37)

(or, more precisely, that the right scaling is obtained; we shall come back to
this later). Large deviations theory (expressed here somewhat loosely) tells
us that, for large n and given h < 0,

Prob{a1+a2+·· ·+an % nh} ’ 2−nF(h), (38)

where F(h) is the Cramér (or rate) function, defined here to be positive to
ensure consistency with the definition of the codimension used in Section 2
(this is also why we use powers of 2 and the minus sign in the definition
of ai).

From (37) and (38), and after integration over all possible h’s, we
obtain

Prob{|w| > t}3 t−pa, (39)

pa=inf
h < 0

F(h)
−h
. (40)

Similarly, for p \ 0, we find

O(|m1 | |m2 | · · · |mn |)pP=2−nzp, (41)

zp=−ln 2 O|m|
pP=inf

h
(ph+F(h)). (42)

Note that (42) is just Cramér’s result that F(h) is the Legendre transform
of the logarithm of the characteristic function of the variables ai. Note also
that (39), (40), (41) and (42) resemble (7), (8), (9) and (10) established in
Section 2. It is easily shown by manipulations resembling those of Section 2
that pa has exactly the value predicted by (35) and that the minimum in
(40) is achieved at

ha=−O|m|pa ln 2 |m|P. (43)

Obviously, in order for pa to exist, negative values for h must be per-
mitted or, in other words, the variable |m| must be allowed to take values in
excess of unity.

In evaluating the tail of the series (32) we have so far assumed that it
suffices to take a single term of suitable order n. Two questions arise: (i)
how large should n be and (ii) what happens if we take the whole series?
The answer to the former follows from (36), (37) and (38): since |w| % 2−nha,

1190 Frisch and Matsumoto



we need to have n of the order of ln2 |w|/|ha |. We observe that, the larger
|ha |, the faster (in n) large |w|-values will be reached. Consistently with the
definition given in Section 2 we call C — |ha | the multifractality parameter.
For the latter question we just briefly report in words our findings which
are a bit too technical for the present paper: each of the terms in (32) is,
except for a random sign factor, an exponential of a sum of ai terms. These
sums perform a random walk. If, for large n, we put the condition that
there should be a large deviation such that the slope of the walk is approx-
imately h ] OaP, then the walk is itself close to a straight line of slope h
(with small Gaussian fluctuations around it). One then finds the same
scaling result as given by (39) and it may be checked that the inclusion of
more than one term just affects the constant in front of the power law.

3.2. Multifractal Properties of the Random Multiplicative Process

The fact that the rmp’s, as defined at the beginning of Section 3, are
multifractal has already been proved in ref. 3. The zp function given there
(our Eq. (29)) is precisely the same as (42) for the Kesten map. This is,
of course, not accidental since the rmp was introduced by analogy with
random multiplicative cascade models, for which a simple relation is
known to exist between their multifractal properties and the large devia-
tions of the logarithms of the multipliers (see, e.g., Section 8.6 of ref. 6).

Now we turn to tails of the fractional derivatives of rmp’s and show
that they have precisely the properties conjectured in Section 2. We shall
limit ourselves to instances where the mean slope of the associated Kesten
map is greater than one or, equivalently using (35), pa < 1. Let us make
a preliminary remark regarding rmp’s for which the largest multiplier is
exactly unity, as is the case of the example considered in Section 4 of ref. 3,
when account is made for a factor `2 in Eq. (9) of that reference. In such
a case, neither the associated Kesten map nor the rmp itself can have a
power-law tail for w: if the multiplier 1 has finite probability, say r < 1,
after n iteration, w is at most O(n) with probability rn. If we now take a
fractional derivative of order a > 0, we have already noted that this rescales
the multipliers by a factor 2a so that power-law tails are no more ruled out.
In the Kesten map associated to Daw there will be a power-law tail with
exponent −pa given, in view of (35), by

O2paa |m|pa P=1. (44)

By (42) this is equivalent to zpa=paa, which is identical to (13). For the
full rmp we do not know a rigorous derivation of this relation but we shall
now show that if Daw(x) has, for all x, a power-law tail probability with
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exponent −pa (0 < pa < 1), then pa is given by (44) and the same exponent
applies to the global homogeneous process Dau.

For this, following rather closely an argument given in ref. 20,
consider

Ka(z, x) — Oe ızD
aw(x)P, (45)

the characteristic function of the fractional derivative of the local rmp. By
(27) and the independence of m (1), m (2), w (1) and w (2), the following integral
equation is obtained

Ka(z, x)=Oe ızD
a
f(x)P F

R
Ka(2ay, 2x) p(y) dy F

R
Ka(2ay, 2x−1) p(y) dy,

(46)

where p( · ) is the probability density of m. By the assumption made, there
is a small-z expansion of the form:

Ka(z, x)=1+|z|pa ga(x)+h.o.t., (47)

where h.o.t. (higher order terms) stands for o(|z|pa). Expanding (46),
collecting all O(|z|pa) terms and integrating overs x, we find that

ga=ga F
R
2paa |y|pa p(y) dy, (48)

where ga — >R ga(x) dx. Eq. (44) follows immediately from (48). From a
small-z expansion of (26), with u and w replaced by Dau and Daw, respec-
tively, it follows that Dau has the same tail exponent −pa.

Finally, we briefly indicate the changes in tail probabilities which
occur when the order of fractional differentiation a varies. For simplicity
we assume that m is bounded and, without loss of generality, that the
largest value mmax=1 (otherwise change a into a− ln2 mmax). For a=0 we
already noted that no power-law tail can be present. The down convexity
of the function pa W 2apaO|m|paP implies that (44) has at most one solution
other than pa=0. Whether or not is has one depends on the Lyapunov
exponent of the Kesten map with multiplier 2am. If 0 < a <−Oln2 |m|P
there is a power-law tail. If a >−Oln2 |m|P there is runaway.

3.3. Designing Numerical Experiments with the Random

Multiplicative Process

In this section we perform numerical experiments with a class of
rmp’s, called dyadic, where the multipliers take only two values (and their
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opposites). The example considered in Section 4 of ref. 3, here called the
Roman rmp, is an instance. It has

m=˛±2
−1/3, each with probability 7/16;

±1, each with probability 1/16.
(49)

The general class studied will be

m=˛±m1, each with probability q/2;

±1, each with probability (1−q)/2,
(50)

where 0 < m1 < 1 and 0 < q < 1. It is easily shown that for the Kesten map
associated to u the zp’s and the multifractality parameter are given by

zp=−ln 2(qm
p
1+1−q), (51)

C(a)=−
ln 2(qm

pa
1 +1−q)
pa

+
qmpa1 ln 2 m1
qmpa1 +1−q

, (52)

where a and pa are related by (44). From (51) we can calculate the
minimum and maximum Hölder exponents:

hmin=0, hmax=−q ln 2 m1. (53)

The simulations reported hereafter have n [ 16 iterations of the rmp
(but much more for the Kesten maps). The width of the Mexican hat is
always s=0.1. For the construction of the local rmp, the simulation
interval, from −0.7 to 1.3, is chosen such that the local rmp w(x) is down
to (single-precision) roundoff level at the edges of this interval. The resolu-
tion is 2−(n+4) (the +4 is needed because the width of the Mexican hat is
substantially smaller than unity). The global rmp is constructed by adding
typically one hundred independent Poisson-shifted local realizations with
a density of the Poisson distribution c=0.5. Fractional derivatives are cal-
culated as multiplications by |k|a of the (discrete) Fourier transform (win-
dowing not needed because of the rapid falloff at the edges). Cumulative
probabilities are calculated from the global rmp using rank ordering to
avoid binning. (21, 22) Cumulative probabilities for Kesten maps are obtained
by Monte-Carlo simulation of the random map with a number of iterations
ranging from n=13 to n=104 and typically 104 realizations. Figure 2
shows a graph of one realization of the (local) Roman rmp for n=13. This
has hmax=7/24 % 0.29. Figure 3(a) shows the cumulative probability of the
fractional derivative for an a chosen to give pa=1/2 and n=16. No
power-law tail is observed. The associated Kesten map does reveal the
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Fig. 3. (a) Distribution of fractional derivative of order a=0.2895 (pa=0.5) for the
Roman rmp. (3) Number of iterations (levels) n in the Monte-Carlo simulation with 102

realizations as labeled. The slope of the line is the predicted asymptotic behavior. No power-
law is observed. (b) Distribution for the associated Kesten map (31) with 104 realizations.
Power-law behavior is observed only when the number of iterations n \ 5×103.
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power-law tail but only after about 5000 iterations (in the rmp this would
correspond to the smallest scale being 2−5000!).

The reason for this slow convergence is the exceedingly small value of
the multifractality parameter C=0.0022991. Hence, the Roman rmp is not
a good candidate for seeing power-law tails in fractional derivatives.

For obtaining better candidates we systematically search through
parameter space, varying m1, q and a and trying to maximize the multi-
fractality parameter C(a) given by (52). In practice, after delineating the
acceptable ranges of these parameters, we randomly choose 3×104 triplets
(m1, q, a) and each time calculate C(a). We thus obtain about half a dozen
triplets for which C(a) is close to unity, i.e., more than 400 times larger
than the value for the Roman rmp. We then select the one for which the
Kesten map displays a conspicuous power-law tail for n as low as possible.
This turns out to be n % 13 (around n % 10 a power-law tail begins to
emerge). We call this the ‘‘optimal rmp.’’ Its parameters are:

m1=0.04, q=0.6, a=1.368, C(a)=0.9867. (54)

-4

-2

0

2

4

6

-0.5 0 0.5 1

w(x)

x

(a)

0

0.5

1

1.5

1 2 3 4 5 6 7 8

ζp

p

4×104

2×104

0

−2×104

−4×104

-0.5 0 0.5 1

D
α w

(x
)

x

(b)

Fig. 4. (a) The (local) optimal rmp defined by (54) and its zp function (as inset); (b) Frac-
tional derivative of order a=1.368 applied to this process; note the spikes.
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Fig. 5. As in Fig. 3, but for the optimal rmp (54) and a=1.368 (pa=0.876). Note the
conspicuous power-law tail after about 13 to 16 iterations.

Figure 4 shows the local optimal rmp and its fractional derivative of order
a=1.368, which gives pa=0.876. Note that the graph of zp (inset on
Fig. 4(a)) is much more curved than that for the Roman rmp. Figure 5(a)
shows the cumulative probability which is seen to display a power-law tail
already for n=13 and n=16. Note that the cumulative probability for the
associated Kesten map Fig. 5(b) is a somewhat wiggly power law due to the
presence of log-periodic subdominant corrections; (15) this phenomenon is
less pronounced if we use lower values of pa (e.g., 0.5, not shown).

4. ANALYSIS OF EXPERIMENTAL DATA

As already stated in the Introduction, multifractality was introduced
to interpret experimental turbulence data, specifically the up convex
bending of the graph of zp. Some of the best high-Reynolds turbulence data
have been collected at the ONERA wind tunnel by the Grenoble group
from LEGI. The Taylor-scale based Reynolds number is Rl % 2700 with
about three decades of scaling (for definitions see, e.g., ref. 6). We use
(longitudinal) velocity data obtained from this group to check for the
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Fig. 6. Distribution of fractional derivative of order a=1/3 for the Modane turbulence
data. The power law with exponent −pa=−3 is the predicted tail behavior at infinite
Reynolds number. In fact, no scaling region is observed. Inset: corresponding zp graph which
is close to its Kolmogorov 1941 value, a straight line of slope 1/3.

possible presence of power-law tails in fractional derivatives. A total of
2.3×109 data points (in 12 segments of variable lengths) is analyzed. To
calculate the fractional derivatives of these non-periodic data we use Hann
windowing (see, e.g., Section 13.4 of ref. 23). The different segments are
processed separately and the union of all fractional derivative data is then
rank ordered to produce cumulative probabilities (using just a single
segment does not produce significantly different results; as we shall see the
problem we shall encounter has little to do with noise which can be reduced
by using more data).

Figure 6 shows the probability of the fractional derivative of order
1/3, a value chosen because, by Kolmogorov’s four-fifths law, the corre-
sponding pa should be exactly three. (6) Figure 7 shows the case a=13/36,
which corresponds to pa=1/2 (when using the lognormal law zp=(p/3)+
(m/18) p(3−p) with m=0.2, an excellent approximation for p up to at
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Fig. 7. As in Fig. 6 but for a=13/36 (pa % 1/2).
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least six). For both instances we show the nearly straight graph of zp over
the relevant range of p’s. In neither case do we see any trace of the pre-
dicted power law tail.

Here, a digression is in order. The fractional derivative analysis of this
turbulence data was actually made by us before the work on random mul-
tiplicative processes reported in Section 3. The latter was motivated in part
by our desire to interpret the failure to see power laws in experimental
data. Of course, now it is clear why we do not see such power laws. The
multifractality parameter of the experimental data, using the lognormal
approximation, is

C(a)=
2+m
6
−a. (55)

For a=1/3 we have C % 0.033 while for a=13/36 we have C % 0.0055.
These values are far too small for power-law tails to be observable with a
three-decade long inertial range. Actually, what we observe in Figs. 6 and 7
at high values of the modulus t of the fractional derivative is due to the
viscous cutoff and can be predicted by the argument of ref. 9, adapted to
fractional derivatives.

Higher Reynolds number data with four decades of scaling will soon
become available thanks to the use of large-scale cryogenic Helium facili-
ties. (24) This increase is unlikely to be sufficient to see the predicted power
laws. Alternative methods, based on the processing of the local dissipation
measure by fractional derivatives or integrals should also be explored.

We now consider financial data for which the observation of power-
law tails for fractional derivatives could be easier, although the data are far
scarcer than in turbulence. Stock market indices are generally believed to
display multifractal scaling. We refer, for example, to http://www.ncrg.
aston.ac.uk/’ vicenter/financial.html which contains a number of refer-
ences to multifractal (or spuriously multifractal) behavior of financial time
series. We use S&P Futures intraday (minute-by-minute) data with linear
interpolation for the approximately 12% of missing data points due to
lack of activity. The total number of points including interpolated data
is 1.88×106. We analyze their logarithms (because returns are defined as
differences of logarithms). Hann windowing is used again (higher-order
windowing makes no substantial difference.). Structure functions (not
shown) of order up to p=4 display almost three decades of scaling. The
corresponding zp function is shown as an inset on Fig. 8. For a=0.348 we
show the cumulative probability (by rank ordering) in Fig. 8. The zp graph
is much more curved than that for turbulence data. The multifractality
parameter, C(0.348) % 0.30, being almost one order of magnitude larger
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than for the turbulence data, it is not surprising to observe a power-law
range ( 3 |t|−3.5) in the cumulative probability. Let us finally point out that,
in one respect, such financial data are closer to Burgers turbulence (which
easily displays power-law tails for fractional derivatives) than to Navier–
Stokes turbulence. Indeed, there are occasional strong discontinuities, such
as financial crashes.

5. CONCLUSION

We have shown in this paper that multifractality of a function has a
signature in the tail behavior of probabilities of fractional derivatives. This
signature may frequently be invisible, since power-law tails emerge only if
the number of scaling octaves times the multifractality parameter exceeds a
value found empirically to be around 10. We recall that the multifractality
parameter C is a measure of how strongly the functions departs from being
self-similar. Incompressible three-dimensional turbulence having C % 1/30
is not a good candidate for seeing such tails. There are many other turbu-
lence-like problems displaying multifractality, such as passive or active
scalars and magnetohydrodynamic turbulence. Most of these should have
larger C ’s.

It is known that the standard way of detecting multifractality, by struc-
ture functions, can produce spurious multifractality. One reason is that self-
similarity does already produce structure functions with scaling, albeit with
zp linearly proportional to the order p. If there is a mechanism, such as con-
tamination by subdominant terms (25) or very slow convergence,(26, 27) which
slightly changes the apparent value of zp, a self-similar function may look
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multifractal. Such a phenomenon is ruled out with our new method which
detects only very robust forms of multifractality.

We mention here some open mathematical issues. Jaffard has recently
shown that multifractality is a (topologically) generic phenomenon in many
function spaces of the Sobolev family such as Besov spaces, irrespective of
any underlying dynamics. (29, 30) Can such a proof be extended to show
genericity of power-law tails? For random multiplicative processes it should
be possible to give a rigorous proof of some of the results presented
somewhat heuristically in Section 3. We notice also that the functional
random map formulation (23) can be used to investigate further the statis-
tics of individual Fourier modes, studied in ref. 31.

Finally, returning to three-dimensional turbulence we cannot resist
asking: since experimentally this turbulence does not ‘‘test positive’’ when
looking for power-laws tails in fractional derivatives does it have other
features which would reveal themselves only at vastly larger—and therefore
perhaps inaccessible—Reynolds numbers? Could it be that the velocity
itself (without taking any derivative) or that velocity increments have
power-law tails in their probabilities, as suggested for example in ref. 28?
This cannot be ruled out completely. For example, if we accept the log-
normal model (with m % 0.2) also for large values of p (for which the
exponent h is negative), we find that zp vanishes for p % 33. This implies
a power-law tail with exponent −33. The multifractality parameter is
C % 0.37. Such an algebraic tail, if it exists, would require about 30 octaves
or 9 decades of scaling, that is Rl’s of about eighteen millions. Getting
there requires the crossing of a substantial ‘‘turbulence desert,’’ but a small
one in comparison with the great high-energy desert predicted by Giorgi’s
and Glashaw’s grand unified theory. (32)
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